Improving Lyngbya wollei Surveys Using non-Destructive Echosounding Measures

Andrew W. Howell, J. Tyler Harris, and Dr. Robert J. Richardson NORTH CAROLINA STATE UNIVERSITY

Lyngbya wollei

- Mat-forming, benthic cyanobacteria
- Rapid biomass development
- Difficult to manage and quantify

Single Cells

Survey Rake

Lake Gaston, NC

Objectives for Improved Survey

Three primary goals:

1. Provide more precise and repeatable survey option

2. Monitor varying herbicide treatment effects over time

3. Increase objectiveness of seasonal lyngbya abundance

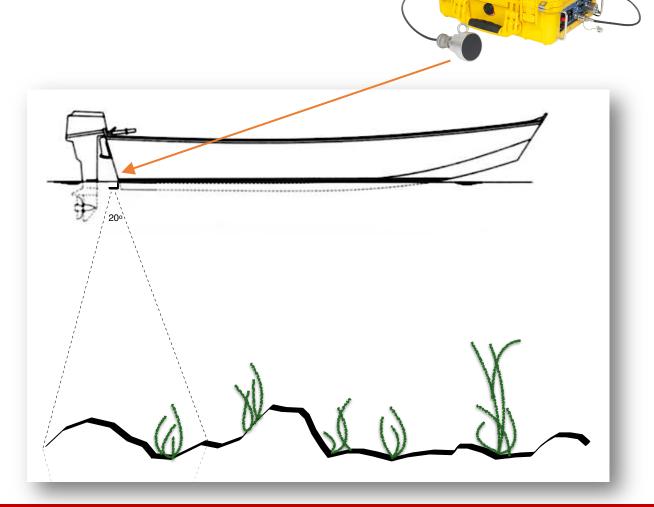
Echosounding Overview

- I. Background information
- II. Autonomous survey strategy
- **III.** Echosounding measures
- IV. Methods and examples for quantifying biomass
- V. Management implications

BioSonics MX Aquatic Habitat Echosounder

Single frequency – 204.8 kHz Beam angle – 8.5 degree conical Ping rate – 5 per second

AQUATIC PLANT MANAGEMENT


LOWRANCE HDS

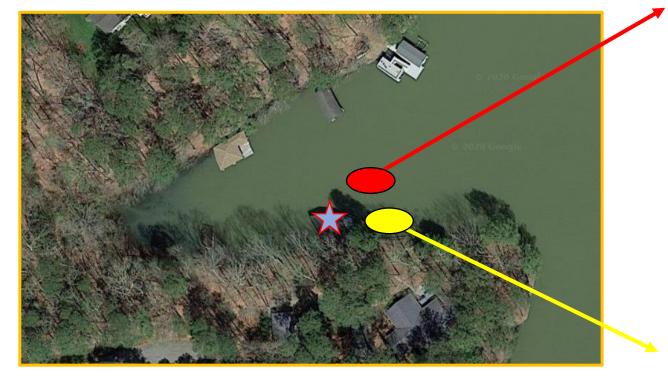
What is Echosounding?

Using SONAR (echosounding) for detecting, locating, and measuring submersed objects [vegetation].

- Active acoustic technology
- Sound travels through water, encounters different media densities and returns back to the original source

NC STATE UNIVERSI

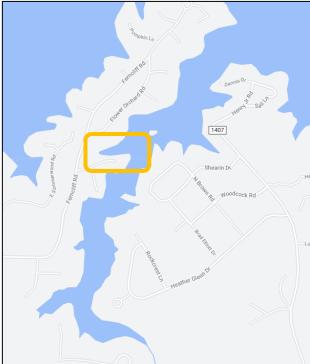
Premise for Lyngbya Management


- What's the desire for echosounding?
- What are some of the goals for management?
- Current stakeholders suggest strong need for research.
- EDRR: Early Detection, Rapid Response.

Aerial Observation

Key Advantages: Resolution, Data Processing, and Repeatable as needed.

Point-Sampling Variability


Blue Boat House

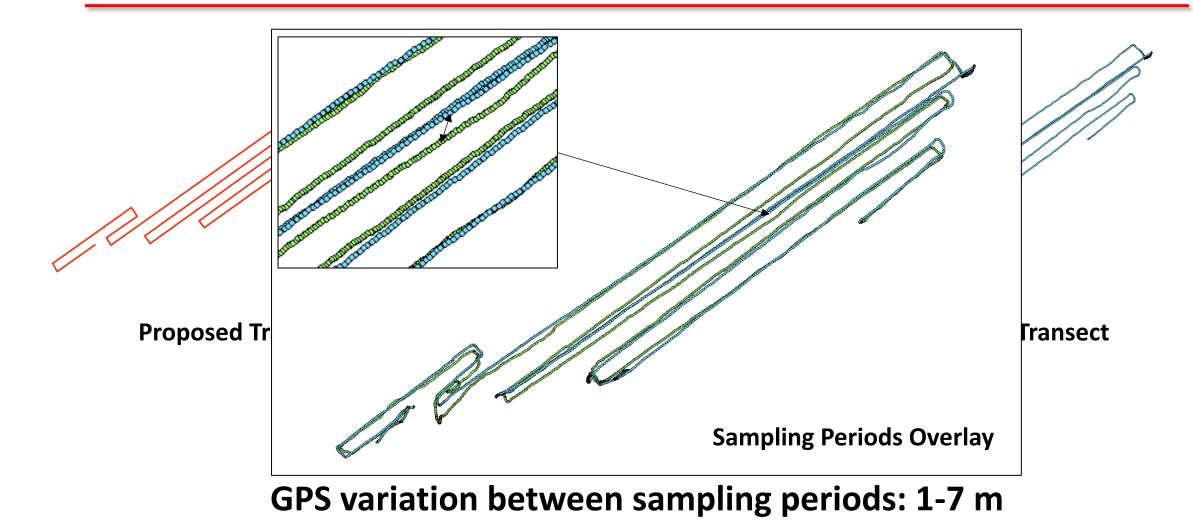
Extra Rake Toss

Manned/Autonomous Survey

- 17' aluminum V-hull vessel
- Navigation Computer: Lowrance Carbon HDS-7
- Auto Steer: MotorGuide Xi5 Trolling Motor with Sonar and Pinpoint GPS (24v system)
- Mission Planning: Import GPX files developed from previous tracks, GIS, or develop waypoint missions in-field
- Vessel Speed: 4.8 km/hr

Autonomy Testing

- Shearon Harris and Jordan Reservoirs
- Provide optimal transect spacing for repeated sensing applications
- Tested vertex spacing and track length


Spacings Tested: 10, 15, 20, 25, 50 meters

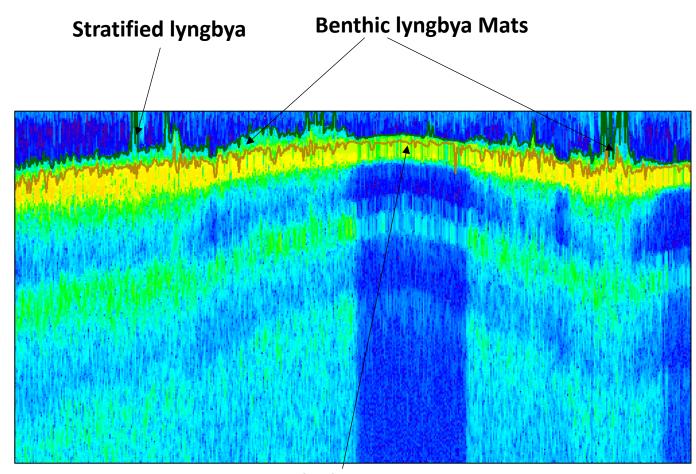
20 m transect spacing appropriate for our study implementation

Autonomous Survey Example

Echosounding Measures

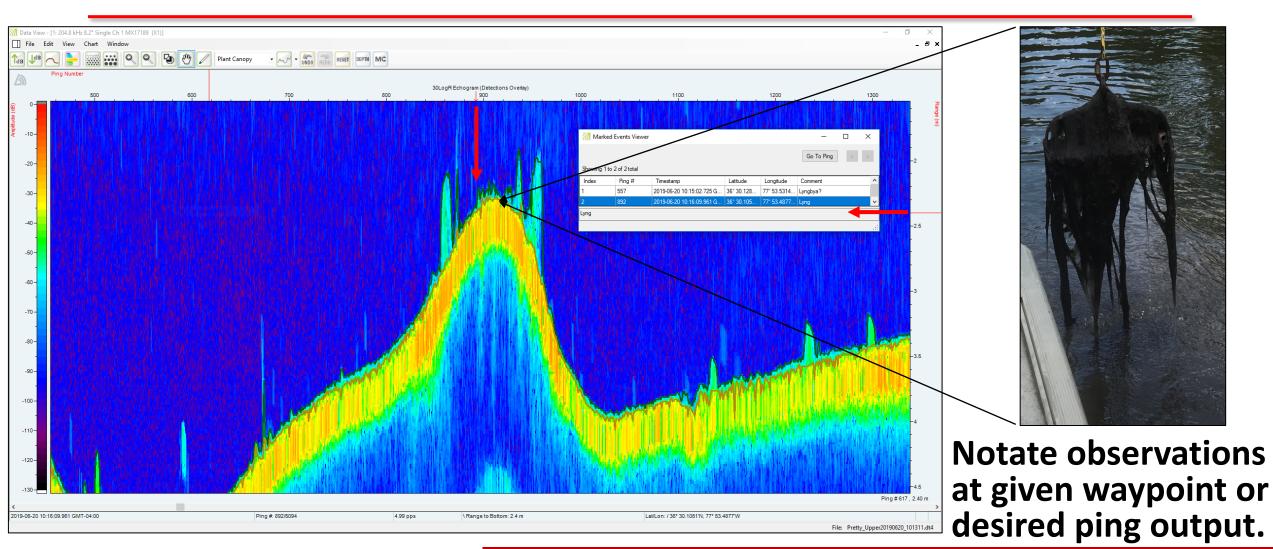
Primary Differences Among Transducers and Processing

Physical Settings	Biosonics MX Transducer	Lowrance Transducer
Transducer Frequency	204.8-kHz	200-kHz
Ping Rate s ⁻¹	5	10-15
Beam Angle*	8.5°	20 °
Computer	Toughbook Laptop	Most Lowrance Units
Data Acquisition*	Visual Acquisition	Internal
Data Processing*	Visual Habitat	Cloud-based (optional)



https://www.chsmith.com.au/news/My-Beam-Angle-is-wider-than-yours.html

*Ability to tailor acquisition and processing settings for specific study site, environmental factors, or vegetation type.


Echosounding Background

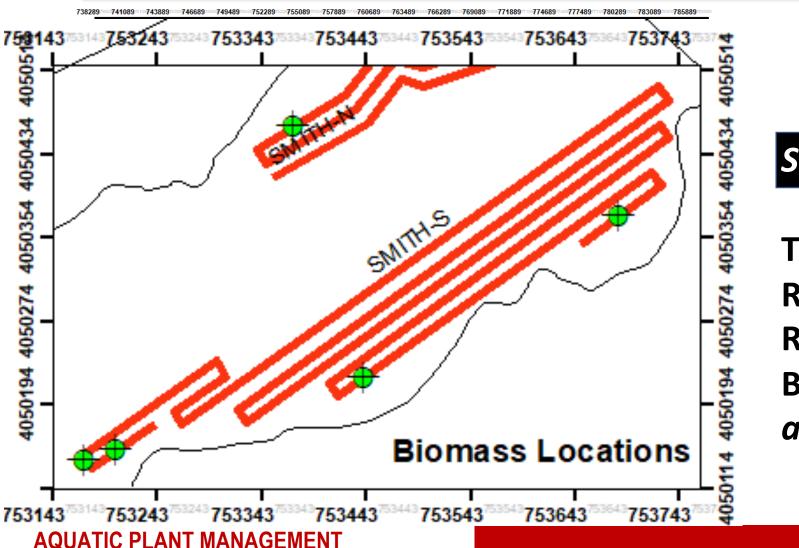
- Tyler Harris testing MX unit
- Shearon Harris and Lake Gaston– Summer and Fall '18
- Testing ability to map SAV using historical lakewide survey maps
- Vegetation recognition in regions previously documented to contain lyngbya
- Confirmed with rake-toss

Lake bottom

Lyngbya Confirmation in situ

Echosounding Methodology

BioSonics MX Echosounder	Biomass Sampling	Processing and Statistics		
 Bottom detection Rising edge threshold: -50 dB Plant height detection Max Depth: 5 m Report Plant Height: 0.1 m Values <10 cm = 'No Plants' All other settings set at default 	 Modified Johnson and Newman Rake Hard rake on 3.5 m pole 14 treatment sites Four points per site Two samples per point Samples rinsed of detritus Fr Wt biomass recorded 	 Visual Habitat software ArcGIS- IDW with fixed search Interpolation: Dependently weighted neighborhood Search Radius: 10 m Grid Cell Size: 1 m R Studio Correlation measures 		
Sampling Timepoints (Monthly) 05-2019 06-2019 07-2019 08-2019 09-2019 → Senescence				

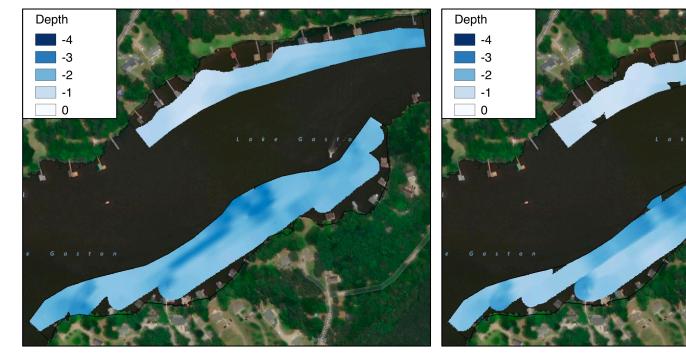

Howell, A.W. and Richardson, R.J., 2019, Correlation of consumer grade hydroacoustic signature to submersed plant biomass. Aquatic Botany. 155, 45-51.

Echosounding Methodology

BioSonics MX Echosounder	Biomass Sampling	Processing and Statistics		
 Rising edge threshold: -50 dB Plant height detection Max Depth: 5 m Report Plant Height: 0.1 m Values <10 cm = 'No Plants' 	 Modified Johnson and Newman Rake Hard rake on 3.5 m pole 14 treatment sites Four points per site Two samples per point Samples rinsed of detritus Fr Wt biomass recorded 	 Visual Habitat software ArcGIS- IDW with fixed search Interpolation: Dependently weighted neighborhood Search Radius: 10 m Grid Cell Size: 1 m R Studio Correlation measures 		
Sampling Timepoints (Monthly) 05-2019 ◆ 06-2019 07-2019 08-2019 09-2019 > Senescence				

Howell, A.W. and Richardson, R.J., 2019, Correlation of consumer grade hydroacoustic signature to submersed plant biomass. Aquatic Botany. 155, 45-51.

Lyngbya Sampling: 2019 Example

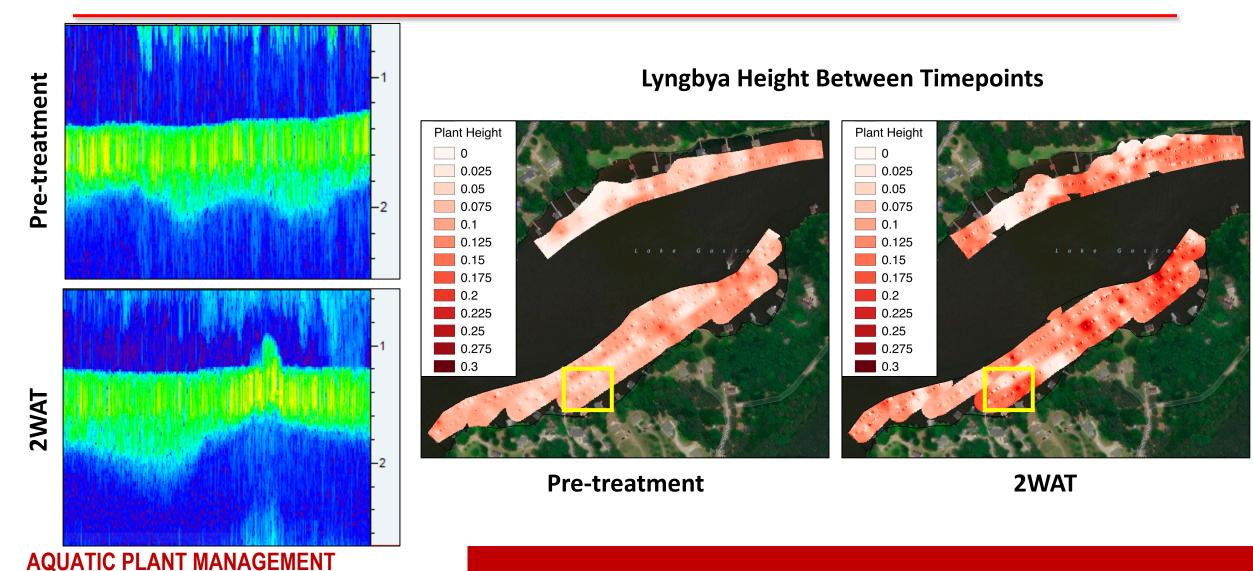

Smith Creek South

Treatment Area: 4.86 ha/12 ac Route Length: 2.83 km/1.76 M Route Spacing: 20 m/ 65.6 ft Biomass Collected: Planned autonomous survey transects

Example Findings: Depth

Raster comparisons

Correlation analyses



Depth Between Timepoints

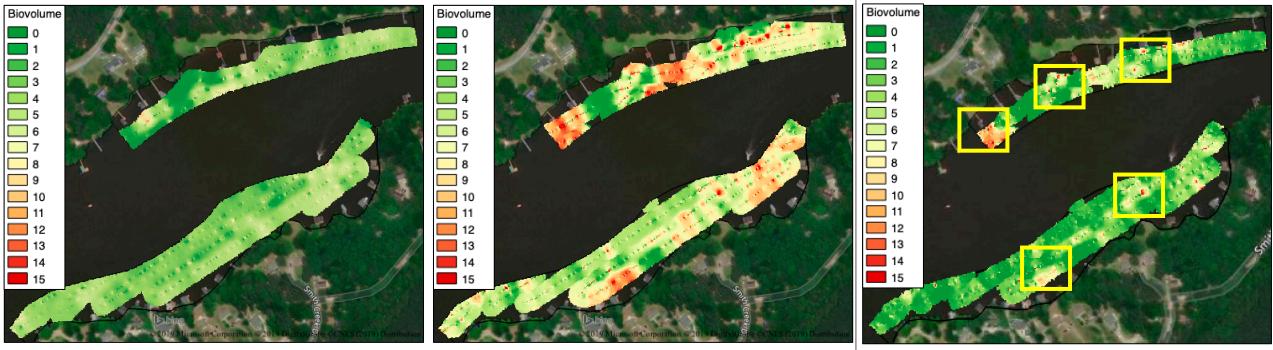
Pre-treatment

2WAT

Example Findings: Height

Example Findings: Biovolume

Biovolume Between Timepoints

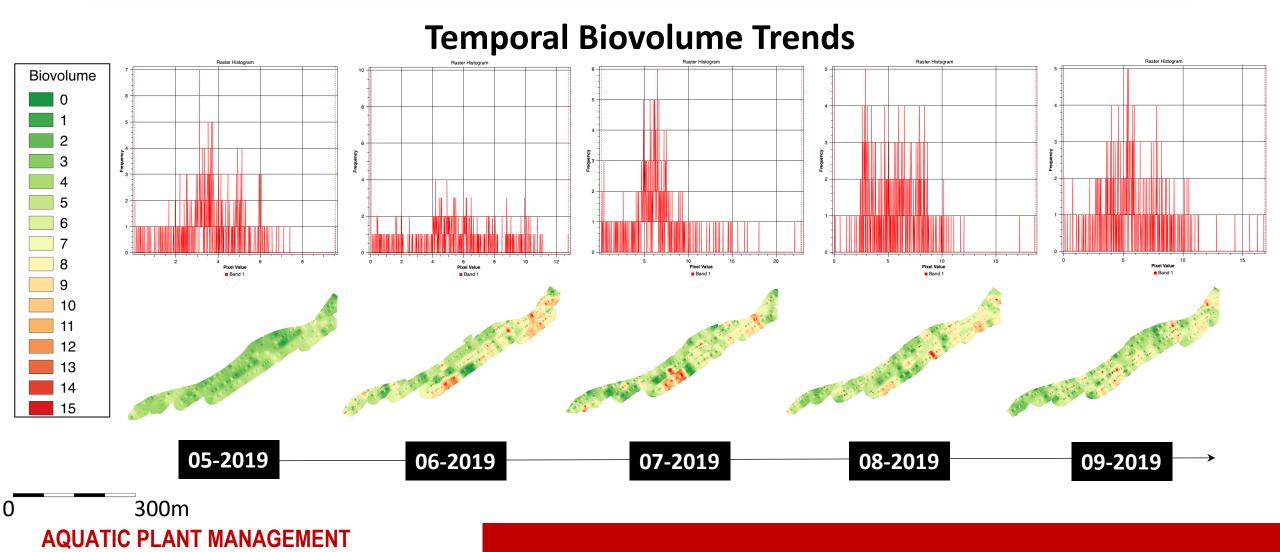

Pre-treatment

2WAT

Example Findings: Biovolume

Biovolume Between Timepoints

Biovolume Percent Change



Pre-treatment

Pre-to-Post

Example Findings: Biovolume

Example Findings: Means Separation

Temporal Lyngbya Mat Height Distribution - Smith S Mat Height Estimate [ft] 0 August (19,21,22) September (23,25,26) November (18,19,20) August (01,06,09) April (23,24,25) June (17,18,20) Sampling Timepoint

AQUATIC PLANT MANAGEMENT

Mean lyngbya mat heights among treatment sites among BioSonics sampling timepoints.

Timepoint	Mean Mat Height
April (23,24,25)	0.23 a
June (17,18,20)	0.33 ab
August (01,06,09)	0.83 b
August (19,21,22)	0.36 ab
September (23,25,26)	0.22 a
November (18,19,20)	0.38 ab

*Mat heights selected from each raster timepoint using the same coordinates as biomass sampling points (n = 4 per treatment site).

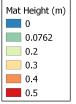
** Means within the same column followed by the same letter do not significantly differ (P < .05).

Example Findings

Echosounding Correlation to Lyngbya Biomass 1000 Fresh Weight Biomass (g) y = 36.67 + 810.89x; R²_{Adj}: 0.249 Spearman rank: 0.126 **Raster comparisons** 750 p-value: <0.001 500 250 **Correlation analyses** 0 0.2 0.4 0.0 0.6 Lyngbya Height (m)

*Only one run of data shown with 52 observations.

2020 Preliminary Findings


Conducted monthly echosounding scans since April

Lyons

 April 2020
 May 2020
 June 2020

 Image: state state

	Mean Vertical Occupancy (in)			
Site	April	May	June	
Hawtree Control	6.0 ± 1.7	5.4 ± 2.2	5.6 ± 1.4	
Hawtree N	5.2 ± 4.5	4.6 ± 1.9	4.5 ± 1.9	
Hawtree W	5.2 ± 2.1	5.4 ± 2.0	5.8 ± 2.1	
Lees Creek 1	2.7 ± 1.8	3.9 ± 2.9	4.6 ± 2.4	
Lees Creek 2	4.5 ± 4.6	3.1 ± 1.8	3.3 ± 2.1	
Lees Creek 3	4.5 ± 2.0	4.2 ± 2.3	4.8 ± 2.5	
Lyons	4.9 ± 2.5	5.1 ± 2.3	9.5 ± 7.9	
Pretty Control E	4.5 ± 2.7	5.1 ± 1.7	5.4 ± 1.9	
Pretty Control W	4.9 ± 4.2	6.0 ± 1.8	6.2 ± 2.1	
Pretty Lower	5.4 ± 1.7	6.0 ± 1.1	5.4 ± 1.8	
Pretty Upper 1	3.9 ± 1.6	3.9 ± 1.9	5.3 ± 2.3	
Pretty Upper 2	3.8 ± 2.6	5.6 ± 2.1	5.3 ± 3.4	
Rocky Branch	4.0 ± 1.6	5.5 ± 2.0	6.1 ± 1.7	
Smith Control N	5.4 ± 1.7	5.6 ± 1.8	2.0 ± 2.2	
Smith Control S	5.6 ± 1.6	6.0 ± 1.4	3.6 ± 2.2	
Smith N	5.2 ± 2.2	5.3 ± 2.4	2.9 ± 2.2	
Smith S	5.6 ± 3.0	6.0 ± 1.8	3.1 ± 2.6	
St. Tammany	6.3 ± 3.1	5.4 ± 1.3	5.8 ± 1.3	

2020 Preliminary Findings

Lynbya > .0762 m

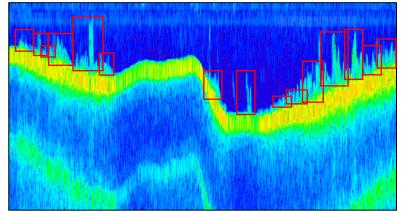
 Conducted monthly echosounding scans since April

Lyons

 April 2020
 May 2020
 June 2020

		Spatial Occ	upancy (Ac)		
Site	April	N	May		June	
Hawtree Control	0.97	1.01	4%	0.92	-10%	
Hawtree N	0.73	0.64	-12%	0.79	24%	
Hawtree W	0.68	0.68	1%	0.79	16%	
Lees Creek 1	0.20	0.26	34%	0.30	13%	
Lees Creek 2	0.19	0.21	12%	0.22	2%	
Lees Creek 3	0.61	0.55	-10%	0.60	9 %	
Lyons	1.34	1.25	-7%	1.01	-19%	
Pretty Control E	0.20	0.17	-12%	0.26	48%	
Pretty Control W	0.51	0.69	34%	0.58	-15%	
Pretty Lower	2.08	2.35	13%	2.12	-10%	
Pretty Upper 1	0.63	0.53	-16%	0.54	2%	
Pretty Upper 2	1.04	1.30	25%	0.98	-25%	
Rocky Branch	0.20	0.32	60%	0.50	60%	
Smith Control N	0.21	0.25	18%	0.05	-80%	
Smith Control S	0.38	0.37	-3%	0.25	-32%	
Smith N	0.90	1.07	19%	0.71	-33%	
Smith S	1.29	1.23	-5%	0.90	-26%	
St. Tammany	0.53	0.64	22%	0.57	-11%	

2020 Lyngbya Biomass Pilot Study



Lyngbya Biomass v. Hydroacoustic Method **Biomass Collection BioSonics** BioBase 100 150 200 m 50 Mat Height (m) Lyngbya Biomass (g) 0 • 0-0 0.0762 • 0 - 100 0.2 • 100 - 200 0.3 200 - 300 0.4 300 - 400 0.5

Summary of Findings

- Transects allow repeated measures for spatial comparison pre- and posttreatment
- User-based processing provides ability to confirm lyngbya presence in-field
- Data processing allows discovery of mats which may otherwise go undetected using rake-toss and biomass methods alone
- Surface mats difficult to map using echosounding alone

Management Implications

- I. Improve current monitoring efforts to provide quantifiable measure of presence and abundance for treatments
- **II.** Provides savings in time and personnel effort
- III. Repeatable and objective option for many traditional surveys
- IV. Reduce risk of spread during monitoring

*EDRR: Identification of nuisance, non-native, or invasive species to decrease environmental and economic risk.

Acknowledgements & Reference

Dr. Richardson's Lab -- Steve Hoyle, Tyler Harris, Jessica Baumann BioSonics Team

Lake Gaston Weed Control Council

Howell, A.W. and Richardson, R.J., 2019, *Correlation of consumer grade hydroacoustic signature to submersed plant biomass*. Aquatic Botany. 155, 45-51.

Patel, M., Jernigan, S., Richardson, R., Ferguson, S., and Buckner, G., 2019, Autonomous Robotics for Identification and Management of Invasive Aquatic Plant Species. Applied Sciences. 9, 2410.

Transducer Beam Angle Image: chsmith.com.au/news/My-Beam-Angle-is-wider-than-yours.html

Andrew Howell awhowell@ncsu.edu

THE R. P. LEWIS CO., LANSING MICH.

Questions.

Department of Crop and Soil Science, NC State University, 4401F Williams Hall, Raleigh, NC 27695

NC STATE UNIVERSITY